问题1486--2020年-CSP-J第二轮复赛第一题-优秀的拆分( power)

1486: 2020年-CSP-J第二轮复赛第一题-优秀的拆分( power)

时间限制: 1 Sec  内存限制: 128 MB
提交: 8  解决: 7
[提交] [状态] [讨论版] [命题人:]

题目描述

一般来说,一个正整数可以拆分成若干个正整数的和。例如, 1 = 1, 10 =1 + 2 + 3 + 4 等。
对于正整数 n 的一种特定拆分,我们称它为“优秀的”,当且仅当在这种拆分下,n被分解为了若干个不同的 2 的正整数次幂。注意, 一个数n 能被表示成 2 的正整数次幂,当且仅当n能通过正整数个 2 相乘在一起得到。
例如, 10 = 8 + 2 = 23 + 21 是一个优秀的拆分。但是, 7 = 4 + 2 + 1 =22 + 21 + 20 就不是一个优秀的拆分,因为 1 不是 2 的正整数次幂。
现在,给定正整数n,你需要判断这个数的所有拆分中,是否存在优秀的拆分。 若存在, 请你给出具体的拆分方案。

输入

只有一行,一个正整数 n,代表需要判断的数。(n<=10000000)

输出

如果这个数的所有拆分中,存在优秀的拆分。那么, 你需要从大到小输出这个拆分中的每一个数, 相邻两个数之间用一个空格隔开。 可以证明, 在规定了拆分数字的顺序后, 该拆分方案是唯一的。
若不存在优秀的拆分,输出“ -1”(不包含双引号)。

样例输入 Copy

6

样例输出 Copy

4 2

提示

2020年CSP-J复赛第一题

来源/分类